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ABSTRACT 

Rayleigh damping model suggests high physical damping at high frequency. This is considered to be desirable to filter the 

inaccurate high-frequency responses in numerical transient analysis. However, with some widely adopted time integrators, the 

simulated system shows unexpected oscillation as if no damping is in effect. This paper presents an investigation on such 

observation and offers an insightful explanation. Following the linear stability analysis approach, the eigenvalues of the 

amplification matrix corresponding to an integrator are derived in terms of physical damping ratio and dimensionless frequency. 

It is concluded that oscillation and the associated small algorithmic damping effect is attributed to an asymptotic eigenvalue of 

-1, with illustration using Newmark trapezoidal integrator. 
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1 INTRODUCTION 

If a structural system is discretized in space, the following semi-discrete equations of motion can be obtained. 

  Mu Cu Ku F  (1) 

where, M, C, K and F are the mass, damping, stiffness matrices and the external load vector, and u  , u  and u  denote 

displacement, velocity and acceleration respectively. Direct time integration is probably the most generic way to solve the 

equations of motion and implicit schemes are mostly preferred for structural dynamics. Many implicit schemes have been 

developed, such as the Newmark method[2], the HHT-α method [3], the three parameters method (generalized-α method) [4],[5], 

and the Bathe’s method[6][7][8].  

In many structural dynamics applications only lower frequency response is of interest, and the higher frequency response of 

the discretized system generally do not accurately represent the behavior of the original problem. It is often desirable to remove 

any spurious participation of the higher modes in the transient analysis [3]. This is particularly important when solving problems 

exhibiting nonlinear material behavior, e.g. plasticity. For such problems, spurious oscillations would feed into the constitutive 

routines and adversely affect the computational performance [9]. 

In order to filter high-frequency response, one way is to use an algorithm with high-frequency dissipation characteristics, such 

as the algorithms mentioned above [3]-[7]. Another point of view is that the use of Rayleigh damping can naturally filter out high-

frequency response. For the Rayleigh damped system, because a high-frequency response theoretically corresponds to high 

physical damping, it is widely considered to be helpful in damping out spurious high-frequency response in the system. 

However, this may not be the case, e.g. when the Newmark trapezoidal rule is applied to calculate the large-scale structural 

dynamic problems with Rayleigh damping, the high-frequency oscillation persists. Hughes pointed out the problem after 

studying the spectral radius of the amplification matrix in his work [10].  

In this paper, the counterintuitive fact that Rayleigh damping cannot effectively filter the high-frequency oscillation of the 

system is demonstrated via three typical examples. The eigenvalues of the amplification matrix of the trapezoidal rule are 

studied in detail. An alternative explanation for the cause of oscillation is presented. 
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2 OSCILLATION OF OVERDAMPED SYSTEMS 

2.1 Rayleigh damping model 

In structural dynamic analysis problems, Rayleigh damping [1] is one of the most common damping models. For Rayleigh 

damping, the C matrix is derived from a combination of the mass matrix and the stiffness matrix 

  C M K  (2) 

α and β are determined by two given frequency values ωi and ωj and corresponding damping ratio ξi and ξj. In general, ξ = ξi = 

ξj. As is shown in Fig.1, Rayleigh damping is characterized by a frequency within the frequency range (ωi, ωj) of the structure, 

the damping ratio is a bit smaller than ξ. However, since the damping corresponding to the high frequency is approximately 

proportional to the natural frequency ωn, when the structure contains relatively stiff parts or the finite element mesh contains 

elements with very small size, the highest frequency of the structure is very large, and the corresponding damping ratio is also 

very large. Therefore, if the modes of the structure are decomposed, the system corresponding to the high-frequency mode is 

overdamped. 

 

Fig.1 Rayleigh damping model 

2.2 Single DOF Overdamped System and the exact solution 

For the purposes of investigation, it is advantageous to reduce the coupled equations of motion in Eq.(1) and the algorithmic 

equations to a series of uncoupled single-degree-of-freedom systems. The equation of motion associated with the individual 

mode is 

22u+ u+ u = f   (3) 

and the initial conditions are u(0)=u0 and 0
(0)u v . Only free vibration case (f=0) is studied in this paper. There are three cases 

for the exact solution of Eq.(3) [10]. If ξ>1, the system is overdamped and the exact solution is 

0 0

0
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where, 
2 1

E
    . For overdamped systems, vibration (or oscillation) does not occur. 

2.3 Oscillation response of trapezoidal rule 

To calculate the dynamic response of a system defined by Eq.(3), methods of direct time integration are commonly used, among 

which, the Newmark method[2] with two parameters of 1/2 and 1/4, also known as trapezoidal rule or constant acceleration 
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method, is often used. Although this method is most commonly used, when the method is applied to structural dynamic analysis, 

even if Rayleigh damping is used to make the high-frequency component overdamped, the high-frequency response still exists. 

The following three examples will illustrate this counterintuitive phenomenon. 

Example 1 : SDOF system. 

The parameters in Eq.(3) are  

250   10000    0f   (5) 

with the initial conditions of u0=1 and v0=1. It is an overdamped system. The system was analyzed using the Newmark method, 

and the size of the time step was set to be Δt=0.01. The comparison of the solutions of the Newmark method and the exact 

solution shown in Eq.(4) is shown in the Fig.2. 

 
   

(a) Displacement (b) Displacement (zoomin) (c) Velocity (d) Acceleration 

Fig.2 Comparison of numerical and exact solutions 

Example 2: MDOF system [8] 

An MDOF spring system shown in Fig.3 was considered. Bathe adopted this example to verify that his algorithm is superior to 

the Newmark method in solving the stiff problems.  

 

Fig.3 Model problem of a MDOF spring system 

The matrices of the governing equations shown in (1) are  

2 1 2 2 1 1

3 2 2

0

0 0

m k k k k u

m k k

      
       

    
M K F  (6) 

with k1=108, k2=1, m1=0, m2=1, m3=1, ωp=1.2. The two frequencies ω1 and ω2 of the system are 1 and 104, respectively. The 

Rayleigh damping matrix C is calculated by Eq.(2), and the parameter is selected as α = 0.05, β = 0.05, such that the physical 

damping ratios of the two modes are ξ1 =0.05 and ξ2 =250. This example represents the stiff and flexible parts of a much more 

complex structural system. The left high stiffness spring in the model problem is used to represent almost rigid connections or 

penalty factors used, while the right flexible spring represents the flexible parts of the complex structural model. The existence 

of such a nearly rigid part is likely to cause the result of oscillation. 

For comparison, the trapezoidal rule and the Bathe’s algorithm were used for calculation of this problem. The step size is 

Δt=0.01. The results are shown in Fig.4. For the Newmark method, high-frequency oscillations occur again for the acceleration. 
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(a) Displacement of m2 (b) Velocity of m2 (c) Acceleration of m2 

Fig.4 Comparison of Newmark method and Bathe’s method for response of  2nd  DOF 

Example 3: Distortion of shear force response adjacent to very rigid parts in a frame structure 

The model in Fig.5 is a two-story space frame subjected to ground motion of 1940 El Centro NS record at the base. The 

material properties and dimensions of the model are listed in Fig.5(a), where E is Young’ modulus, μ is Poisson's ratio, ρb and 

ρc are respectively the density of beams and columns, b, h and L are respectively the width, depth, length of every column/beam. 

Euler-Bernoulli beam elements are used to mesh the beams and columns in the frame. Model A in Fig.5(a) represents an 

ordinary meshing strategy, in which a beam/column component is represented by one beam element. Model B is established 

for the purpose of comparison, in which a very short element with a length of half the beam width, 0.5b, is inserted on top of 

each column at the first story (Fig.5(b)). Meanwhile, the Young’s Modulus of the short element is 5000 times E to simulate the 

rigid zone of the beam-column joint.  

  

(a) Model A (b) Model B 

Fig.5 A frame structure 

A lumped mass matrix generated by the HRZ[11] method is adopted. Rayleigh damping is involved with a damping ratio of 0.05. 

The first three angular frequencies of this structure are ω1 = 30.6 rad/s, ω2 = 30.6 rad/s, ω3 = 44.2 rad/s. The two coefficients 

of Rayleigh damping are α = 1.808, β = 0.001337, which are determined by the first and third angular frequencies. For 

comparison, the following three cases of analysis were implemented. The time step is set to be 0.01s for the analysis. 

Case a) Model A by trapezoidal rule; 

Case b) Model B by trapezoidal rule; 

Case c) Model B by Bathe’s method. 

The time history responses of the shear force at top of one column of the first story (the green column in Fig.5) are compared 

in Fig.6. 

El-Centro 

E=2×10
10

Pa 

μ=0.25 
ρb=2.5×10

3
kg/m

3 
ρc=ρb /1000 

b=h=0.4m 
L=4m 

Short element (L
s
=0.5b) 
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Fig.6a Comparison of Case(a) and Case(c) 

  

Fig.6b Comparison of Case(b) and Case(c) 

 

Fig.6c Comparison of Case(b) and Case(c) (zoomin) 

Remarks 

In the Rayleigh-damped system, if there are very rigid parts in the system, the dynamic response of the degree of freedom 

adjacent to these parts exhibits strong oscillation if trapezoidal rule is applied. The Bathe’s algorithm can effectively eliminate 

these high-frequency oscillations and can be used as a reference solution. 
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3 AN ALTERNATIVE EXPLANATION FOR THE CAUSE OF OSCILLATION 

In order to study the causes of the high-frequency oscillation of the trapezoidal rule, the eigenvalues of the amplification matrix 

of the trapezoidal rule are studied in this section. 

The recursive format of trapezoidal rule [12] is 

1

Trape

i i
Y A Y  (7) 

where, 
1i

Y  and 
i

Y  are vectors of the displacement, velocity and acceleration at the start time and the end time of the i-th time 

step respectively. 

1

1 1
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t a

 
 

   
   

Y  (8) 

and Trape
A is the amplification matrix of trapezoidal rule, of which the expression with respect to ξ and Ω is 

   

   

2 2 2
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2
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

A  (9) 

where Ω represents the dimensionless frequency with the expression 

t    (10) 

The eigenvalues of Trape
A  are given by 

11,2

2

1 2
A A A     and   

3
0   (11) 

where 

21
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4 4
A
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    

 

 

2 2

1 2
2

2

2

16 1

4 4
A A





 

   
   (12) 

For the overdamped system, i.e. 1  , 
1,2
 shown in Eq.(11) are two real values.  

For comparison with the trapezoidal rule, the amplification matrix and corresponding eigenvalues of the exact solution, which 

can be calculated by Eq.(4),  are also given as follows. 

2

1
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A  (13) 

where 
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E E
t    

2 1
E

     (14) 

Since the acceleration does not appear in the recurrence formula, the dimension of A is 2 by 2. The eigenvalues of E
A are 

    1,2
e cosh sinhE

E E

       (15) 

which are also two real values. 

The comparison of eigenvalues between the trapezoidal rule and the exact solution is illustrated in Fig.7. 

  

(a) 
1
   (b) 

2
  

Fig.7  Comparison of the two eigenvalues between trapezoidal rule and the exact solution 

The relationship between the displacement response and the eigenvalues can be expressed by[10] 

  1 1 2 2

n n

i
u u n t c c      (16) 

At high frequencies and high damping, the second eigenvalue λ2 approaches -1(for example, when Ω=100 and ξ=250, λ1 = 

0.81818 and λ2 = -0.99992). The second term at the right-hand-side of Eq.(16) is approximately equal to c2(-1)n, of which the 

sign will switch every time step, and the value almost does not decay, causing the “saw-tooth” oscillations of the response, as 

is shown in Fig.2, Fig.4 and Fig.6. While for the exact solution, the second eigenvalue λ2 tends to zero with increasing frequency 

and damping, which is why the exact solution does not oscillate. 

4 CONCLUSIONS 

Rayleigh damping is the most commonly used damping model in structural dynamic analysis. At the same time, the trapezoidal 

rule is also the most commonly used integral algorithm in structural dynamic analysis. However, when the two are combined, 

the high-frequency oscillation occurs counter-intuitively, resulting in serious distortion of the dynamic response.  

Aiming at this problem, an alternative explanation for the cause of oscillation is presented in this paper. Taking the Newmark 

trapezoidal rule as an example, the eigenvalues of the amplification matrix of the algorithm are expressed as a function of the 

physical damping ratio ξ and the dimensionless frequency Ω. It is found that with the increase of ξ and Ω, one of the eigenvalues 

tends to -1, which is directly causing oscillation. Therefore, the cause for the fact that the Rayleigh damping model is difficult 

to damp out the high-frequency response is alternatively explained. 

To avoid the high-frequency oscillation, two methods can be used. One is to use an integral method with considerable numerical 

dissipation, such as Bathe‘s method [6]. Secondly, rather than the Rayleigh damping model, a frequency-insensitive damping 

Exact 

Trapezoidal 

rule 
Trapezoidal 

rule 

Exact 



12th Canadian Conference on Earthquake Engineering, Quebec City, June 17-20, 2019 

8 

 

model can be adopted, such as the damping model[13] proposed by Huang et al., which gives nearly equal physical damping for 

any order frequency, and thus avoids high-frequency oscillation caused by the overdamped case. 
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